师资队伍

当前位置: 首页 > 师资队伍 > 博士生导师 > 正文

张文礼

作者:   来源:      发布日期:2024-05-10   浏览:


张文礼

个人简介

张文礼,博士,教授,博士生导师,国家海外高层次青年人才,广东工业大学百人计划特聘教授,主要从事木质纤维素基碳电极材料开发及其工业应用的研究,Angewandte Chemie, Advanced Materials, Advanced Energy Materials, Advanced Functional Materials, Chemical Engineering Science, ACS Nano, Nano Energy, Energy Storage Materials, Small Methods, Eelectrochemical Energy Reviews, Carbon ResearchEnergyChem等期刊发表学术论文150余篇,其中ESI高被引论文10余篇引用8000余次,Google Scholar h指数48

教育和工作经历

2021.10至今,广东工业大学,先进制造学院,教授

2020.12至今,广东工业大学,轻工化工学院,教授

2017.92020.11,沙特阿拉伯阿卜杜拉国王科技大学,材料科学与工程系,博士后

2011.92017.6,吉林大学,化学学院,理学博士

2007.92011.6,吉林大学,新能源与环境学院,工学学士

研究内容

1) 碳电极材料开发及其应用,2) 钠离子电池硬炭负极材料,3) 碳材料与添加剂的规模化制备, 4) 超级电容器电极材料, 5) 形稳阳极(DSA)开发与工业电催化应用。

在研(参与)项目

国家海外高层次青年人才引进项目

国家自然科学基金项目

广东省重点领域研发计划项目

广州市基础与应用基础研究项目

企业技术开发横向项目

学术与社会兼职:

Resources, Chemicals and Materials 编委Advanced Powder Materials特邀编委Frontiers in Energy Research副编辑Processes编委等

研究生招生专业:

化学工程与技术

本科生&研究生指导

广东省科技创新战略专项资金(大学生科技创新培育)项目

大学生创新创业训练计划项目(国家级、省级和校级)

广东工业大学研究生拔尖创新培养计划

★ 欢迎有志于新能源、新材料研究的本科生、研究生加入研究团队。

联系方式:

邮箱wlzhang@#gdut.edu.cn

地址:广东工业大学大学城校区工学四号馆329

主要研究课题:

木质素基碳电极材料可控制备及其储能机理研究

Advanced Energy Materials 2018, 8, 1801840

Nano Energy, 2022, 11, 2100201; Adv. Funct. Mater. 2022, 2209914.

木质纤维素衍生碳电极材料的工程基础问题研究

Journal of Cleaner Production, 2016; Chem. Eng. Sci., 2022, 255, 117672; Chem. Eng. Sci., 20023, 270, 118559

电池材料、器件与产业化

Electrochemical Energy Reviews 2022, 5, 2

代表性论文和著作:

Research Gate: https://www.researchgate.net/profile/Wenli-Zhang-9

Google Scholar: https://scholar.google.com/citations?user=4JXIPt4AAAAJ&hl=en

1. Wenli Zhang, Xueqing Qiu*, Caiwei Wang, Lei Zhong, Fangbao Fu, Jiahao Zhu, Zejie Zhang, Yanlin Qin, Dongjie Yang, Chunbao Charles Xu, Lignin Derived Carbon Materials: Current Status and Future Trends, Carbon Research, 2022 DOI: DOI: 10.1007/s44246-022-00009-1

2. Yin J, Lin H, Shi J, Lin Z, Bao J, Wang Y, et al. Lead-Carbon Batteries toward Future Energy Storage: From Mechanism and Materials to Applications. Electrochem Energy Rev. 2022 Sep 27;5(3):2.

3. Yin J, Jin J, Chen C, Lei Y, Tian Z, Wang Y, et al. Preferential Pyrolysis Construction of Carbon Anodes with 8400 h Lifespan for HighEnergyDensity Kion Batteries. AngewChem Int Ed. 2023;62:e202301396.

4. Zhang, W.; Sun, M.; Yin, J.; Abou-Hamad, E.; Schwingenschlögl, U.; Costa, P. M. F. J.; Alshareef, H. N.* A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angew. Chemie Int. Ed. 2021, 60, 1355–1363. https://doi.org/10.1002/anie.202011484

5. Zhang, W.; Yin, J.; Sun, M.; Wang, W.; Chen, C.; Altunkaya, M.; Emwas, A. H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H. N.* Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. Adv. Mater. 2020, 32, 2000732. https://doi.org/10.1002/adma.202000732

6. Zhang, W.#; Cao, Z.#; Wang, W.; Alhajji, E.; Emwas, A. H.; Costa, P. M. F. J.; Cavallo, L.; Alshareef, H. N.* A Site-Selective Doping Strategy of Carbon Anodes with Remarkable K-Ion Storage Capacity. Angew. Chemie - Int. Ed. 2020, 59, 4448–4455. https://doi.org/10.1002/anie.201913368

7. Zhang, W.; Ming, J.; Zhao, W.; Dong, X.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N.* Graphitic Nanocarbon with Engineered Defects for High-Performance Potassium-Ion Battery Anodes. Adv. Funct. Mater. 2019, 29, 1903641. https://doi.org/10.1002/adfm.201903641

8. Zhong L, Zhang W*, Sun S, Zhao L, Jian W, He X, et al. Engineering of the Crystalline Lattice of Hard Carbon Anodes Toward Practical Potassium-Ion Batteries. Adv Funct Mater. 2023;33:2211872.

9. Zhang, W.#, Sun, M.#, Yin, J.#, Lu, K., Schwingenschlögl, U., Qiu, X., Alshareef, H.N.*, Accordion-Like Carbon with High Nitrogen Doping for Fast and Stable K Ion Storage. Adv. Energy Mater. 2021, 2101928. https://doi.org/10.1002/aenm.202101928

10. Yin, J.#; Zhang, W.#; Wang, W.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N.* Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Adv. Energy Mater. 2020, 10 (37), 2001705. https://doi.org/10.1002/aenm.202001705

11. Zhang, W.#; Lei, Y.#; Ming, F.; Jiang, Q.; Costa, P. M. F. J.; Alshareef, H. N.* Lignin Laser Lithography: A Direct-Write Method for Fabricating 3D Graphene Electrodes for Microsupercapacitors. Adv. Energy Mater. 2018, 8, 1801840. https://doi.org/10.1002/aenm.201801840

12. Wu, H.#; Zhang, W.#; Kandambeth, S.; Shekhah, O.; Eddaoudi, M.*; Alshareef, H. N.* Conductive Metal–Organic Frameworks Selectively Grown on Laser‐Scribed Graphene for Electrochemical Microsupercapacitors. Adv. Energy Mater. 2019, 9, 1900482. https://doi.org/10.1002/aenm.201900482

13. Shi Z, Chen S, Xu Z, Liu Z, Guo J, Yin J, et al. Metal Oxide Aerogels: A New Horizon for Stabilizing Anodes in Rechargeable Zinc Metal Batteries. Adv Energy Mater. 2023;13:2300331.

14. Jian W, Qiu X, Lai Y, Yin P, Lin J, Zhang W*. Elucidation of the Mechanism of K-Ion Storage of Hard Carbon and Soft Carbon Anodes in Ether- and Ester-Based Electrolytes. Adv Energy Mater. 2023;13:2301303.

15. Yin, J.#, Zhang, W.#, Alhebshi, N.A., Salah, N., Alshareef, H.N.* Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems. Adv. Energy Mater. 2021, 11, 2100201. https://doi.org/10.1002/aenm.202100201

16. W. Zhang*, J. Yin, W. Jian, Y. Wu, L. Chen, M. Sun, U. Schwingenschlogl, X. Qiu*, H.N. Alshareef*, Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors, Nano Energy. 103 (2022) 107827. https://doi.org/10.1016/j.nanoen.2022.107827.

17. Zhang, W.#; Zhang, F.#; Ming, F.#; Alshareef, H. N.* Sodium-Ion Battery Anodes: Status and Future Trends. EnergyChem 2019, 1, 100012. https://doi.org/10.1016/j.enchem.2019.100012.

18. Zhao L, Yin J, Lin J, Chen C, Chen L, Qiu X, et al. Highly Stable ZnS Anodes for Sodium-Ion Batteries Enabled by Structure and Electrolyte Engineering. ACS Nano. 2024;18:3763–74.

19. Zhang, W.#; Yin, J.#; Wang, W.; Bayhan, Z.; Alshareef, H. N.* Status of Rechargeable Potassium Batteries. Nano Energy 2021, 83, 105792. https://doi.org/10.1016/j.nanoen.2021.105792

20. Zhang, W.*, Sun, M., Yin, J., Wang, W., Huang, G., Qiu, X., Schwingenschlögl, U., Alshareef, H.N.* Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy 2021, 87, 106184. https://doi.org/10.1016/j.nanoen.2021.106184

21. W. Jian, W. Zhang, X. Wei, B. Wu, W. Liang, Y. Wu, J. Yin, K. Lu, Y. Chen, H.N. Alshareef, X. Qiu, Engineering Pore Nanostructure of Carbon Cathodes for Zinc Ion Hybrid Supercapacitors, Adv. Funct. Mater. (2022) 2209914. https://doi.org/10.1002/adfm.202209914.

22. Zhang, W.*, Yin, J., Chen, C., Qiu, X.* Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chem. Eng. Sci. 2021, 241, 116709. https://doi.org/10.1016/j.ces.2021.116709

23. Wen, F.; Zhang, W.; Jian, W.; He, X.; Yin, J.; Shi, J.; Lin, H.; Lu, K.; Qin, Y.; Qiu, X. Sustainable Production of Lignin-Derived Porous Carbons for High-Voltage Electrochemical Capacitors. Chem. Eng. Sci. 2022, 255, 117672. https://doi.org/10.1016/j.ces.2022.117672.

24. Wen F, He X, Sun S, Jian W, Dai R, Meng Q, et al. Production of polypropylene-derived novel porous carbon nanosheets through aromatization stabilization toward supercapacitor applications. Chem Eng Sci. 2023;270:118559.

25. Zhang W*, Yin J, Chen C, Qiu X. Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chem Eng Sci [Internet]. 2021;241:116709. Available from: https://doi.org/10.1016/j.ces.2021.116709

26. Zhang, W.*, Yin, J., Wang, C., Zhao, L., Jian, W., Lu, K., Lin, H., Qiu, X.*, Alshareef, H.N.*. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Small Methods 2021:2100896. https://doi.org/10.1002/smtd.202100896.

27. J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Synthesis Strategies of Porous Carbon for Supercapacitor Applications, Small Methods. 4 (2020) 1900853. https://doi.org/10.1002/smtd.201900853.

28. Zhang X, Qiu X, Lin J, Lin Z, Sun S, et al. Structure and Interface Engineering of Ultrahigh-Rate 3D Bismuth Anodes for Sodium-Ion Batteries. Small. 2023;19:2302071.

29. Ravichandran S, Hao S, Zhang W*. CeO2‑supported Pt nanoclusters for improved electrochemical oxidation of methanol. Carbon Res. 2024;3:21.

部分申请和授权专利:

1. Wenli Zhang, Yongjiu Lei, and Husam N. Alshareef: Lignin based laser lithography process for fabricating 3D graphene electrode and method, US patent U.S. 11,448,959

2. Wenli Zhang, Husam N. Alshareef: Nitrogen-doped carbonaceous anode for metal ion battery and method of making, PCT pending

3. 一种具有多级孔道结构的稻壳基电容炭材料的绿色制备方法,公开号:CN104150461A,授权(转让)

4. 一种由稻壳制备超级电容器用活性炭材料的绿色循环工艺,公开号:CN104150478B,授权(转让)

5. 一种储能用铅酸电池电解液及其制备方法,公开号:CN107403965A,

6. 一种经济环保的木质素基多级结构多孔炭的制备方法,公开号:CN114162819A,

7. 一种基于直接碳化法的木质素基分级多孔炭的制备及应用,公开号:CN113979433A

8. 一种超分子诱导氮掺杂木质素衍生碳材料及其制备方法与应用, 申请号:202210709788.8

9. 一种超级电容器用木质素衍生多孔炭及其制备方法与应用,申请号:2022109723706

10. 一种液相碳化法制备木质素基炭载硫化锌及其钠离子电池负极材料应用

11. 一种木质素基硬炭材料及其制备方法和在钠离子电池中的应用

12. 一种高倍率硬炭负极材料及其制备方法与应用

13. 一种硬炭软炭石墨三元复合碳材料及其制备方法与应用


上一篇:李成超

下一篇:籍少敏