网站首页

当前位置: 首页 > 学术动态 > 正文

轻化名师讲坛(二百三十七)预告:Charge transport and thermoelectric physics of conjugated polymers at ultrahigh charge densities

作者:   来源:      发布日期:2024-07-19   浏览:

报告嘉宾:Henning Sirringhaus 教授

报告题目:Charge transport and thermoelectric physics of conjugated polymers at ultrahigh charge densities

报告时间:2024年7月20日(周六)下午16:30-19:30

讲座地点:工学三号楼208报告厅

报告人简介:

Henning Sirringhaus教授是国际著名的材料物理化学家和器件物理学家,现任英国剑桥大学卡文迪许实验室教授,英国皇家学会会士,美国材料研究学会会士,2020年被授予英国最高研究荣誉英国皇家学会教授,是有机电子学领域最具国际影响的领军科学家之一,在分子体系的凝聚态物理化学和半导体器件物理等方面长期引领领域的发展潮流。Henning Sirringhaus教授在Nature, Science, Nat. Mater., Nat. Phys., Nat. Electron., Nat. Nanotech.等综合性和领域性顶尖期刊上发表300余篇论文,入选汤森路透全球最具影响力科学家,授权专利50项。任德累斯顿推进电子技术中心国际科学咨询委员会成员和剑桥大学大面积电子创新制造中心管理委员会成员。曾获英国皇家化学会Mullard Award (2003)、Hughes Medal (2013)及英国物理学会Faraday Medal(2015)等奖项。

报告摘要:

The complex charge transport physics of conjugated polymers has been studied intensively since the Nobel Prize winning discovery of the electrical conduction in doped polyacetylene by Heeger, MacDiarmid and Shirakawa in 1977. At low charge densities < 1018-1019 cm-3, that are relevant for light-emitting diodes, solar cells or field-effect transistors, the charge transport physics of conjugated polymers is governed by static energetic disorder caused by structural heterogeneity and dynamic disorder due to molecular vibrations. However, organic electrochemical transistors (OECTs) and thermoelectric converters are examples of organic devices that operate at much higher charge carrier concentrations on the order of 1020-1021 cm-3 approaching the density of molecular units. Understanding the charge transport in this regime, where the repulsive Coulombic electron-electron interactions and the attractive interactions between the mobile charge carriers and the charge-balancing counterions need to be considered, poses new challenges. In this presentation we will provide an overview over the current understanding of the key factors that govern charge transport in this ultrahigh carrier density regime and give examples of how better fundamental understanding of the relevant transport physics can lead to significant enhancements in the charge transport and thermoelectric properties of these materials.